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LElTER TO THE EDITOR 

A dynamical model for the origin of Snyder’s quantized 
spacetime algebra 

George Jaroszkiewicz 
Department of Mathematics, University of Nottingham Univmity Park, Notting- 
hnm NG7 2RD, UK 

Received 27 March 1995 

Abstract. We discuss a dynamical model in which Dirac’s constraint theory generates a 
continuum of possible dynamics algebns. Upon canonical quantization almost all are found 
to violate the Jacobi identity. Of the WO anomaly-free algebras, one is Snyder’s quantized 
spacetime algebra and the other is a curved momenhlm space algebra. 

In 1947 Snyder [1,2] wrote down a realization of an operator algebra which he interpreted 
as a model for quantized relativistic spacetime coordinates xu ,  p = 0,1,2,3. His method 
was to use real coordinates qo, 71, 72. q 3 ,  774 in a five-dimensional space v5 with a Lorentz 
signature metric projecting onto a four-dimensional spacetime of constant curvature, that is, 
a De Sitter space associated with a fundamental length a. In his model, the standard (i.e. 
commuting) spacetime coordinate algebra is recovered in the limit a -+ 0. The operators 
x@ are defined without further motivation by 

X W  = in(7”a4 - q 4 a q  p = 0,1,2,3 (1) 

where components with upper indices in V 5  are obtained using the metric tensor as an index 
raising operator. In the following we shall take c = f i  = 1. 

Snyder also introduced the variables p,, = (l/a)qe/q4, interpreted by him as operators 
of energy and momentum, so that the full operator algebra takes the form 

[x’, x ” ]  = iaZMM’” 

[ p ” ,  x ” ]  = i(q’” - ia’p’p”) 

rP”>P”l=o 

(2) 

where M u ”  = ~ ’ p ~ ~ - ~ ’ ’ p ’  and q’” are the components of the metric tensor, with qm = 1, 
q” = qZ = q33 = -1. The M’” satisfy the same algebra as the generators of angular 
momentum and boosts in the standard theory. 

An unsatisfactory feature of Snyder’s paper is the ad hoc way in which the operator 
algebra is simply postulated; it would be preferable to arrive at such an algebra in a more 
natural way. In this letter we discuss a point particle model in which the same dynamical 
algebra occurs as a natural consequence of Dirac’s constraint theory applied to a system with 
second-class constraints. An advantage is that we can dispense with the five-dimensional 
space coordinates q A ,  A = 0,1,2,3,4. 
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The dynamical degrees of freedom in our model are four spacetime coordinates x,, 
,U = 0, 1,2,3 plus one extra coordinate z.  We will also use variables e and A at the start to 
generate constraints, but these variables together with z drop out in the final analysis. All 
coordinates are taken to be real and bosonic. The Lagrangian for the system is given by 

(3) 

where 01 and p are constants and 6 = ~ f l .  The signs of these constants are left unspecified 
at this stage. 

By inspection, it will be seen that the role of the variable e is to generate the analogue 
of the mass-shell constraint in conventional relativistic point particle models, whereas the 
role of the variable A is to constrain the coordinates xfi and z to a four-dimensional subspace 
of constant curvature. Following the standard constraint analysis of Dirac €31 we find the 
three constraints 

‘ e .  O1 

2 2e 
L = -(X’Xe + E Z 2 )  + - + A(x”x, + €Z2 - p )  

#l*”p”p,+€a 2 - a = o  

h = x’x, + €22 - p  M 0 (4) 

62 = x ” p ,  + ZZ = 0 

where pr and K are the momenta conjugate to xP and z respectively. The fundamental 
Poisson brackets are 

These constraints are stable under temporal evolution of the system and have the 
following Poisson brackets with each other on the surface of constraints: 

By inspection we deduce that there are two second-class constraints xi ,  x 2  and one first-class 
constraint 0 in the system. The latter is a linear combination of the above constraints such 
that it has a zero Poisson bracket with all the other constraints, i.e. we look for constants KI, 
~ 2 .  ~3 such that 0 = KI’$L + K& + ~ 3 4 3  satisfies {4, ‘ $ i J p ~  = 0, i = 1,2,3. A solution is 
Q, = ,541 + cu#lz, which turns out to be proportional to the total Hamiltonian. We note that 
this Hamiltonian vanishes on the surface of constraints, as expected in a generally covariant 
theory. 

For the pair of second-class constraints we define 

X i  : = f ’ $ i ~ - S h  X z : = &  (7) 

where f and g are any functions on a phase space which satisfy the condition that on the 
surface of constraints, h: = cuf +Bg does not vanish. We shall take f and g to be constants. 
It turns out that Snyder’s algebra coincides with the choice g = 0. hovided h # 0 then 
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XI and xz are indeed second class. Using these we  may^ construct Dirac brackets [3] in the 
standard way to find 

f ’ “ - U P  b * ~ X ” ~ D B  = -(x P x p h 

(8) 
I 

{P’,.X”)DB =~q”” - i; (gX ’XU - fp”p”) 

g {P”, P”)DB = h(x’P” - X’p’). 

When the second-class ‘constraints are used with the Dirac brackets replacing the Poisson 
brackets we recover equations of motion equivalent to those obtained via the Euler-Lagrange 
equations of motion. We note that the Dirac brackets between z, H ,  x’ and p” are non-zero. 

Canonical quantization follows the standard prescription 
.. *~ 

[A, B1= iIA, B)DB (9) 

leading to the algebra 

x p -pi”] - ̂U -” rx  , ] = - if [i’p + 2h 

(10) [b” , i” ]  = i p J  - L[pi” + i Y f ” ]  - -1j’y f. 

[$a, B”] = !+fly + P”2” - i U $ ’ -  e’;“] 
,+b”jy] 2h 2h 

2h 

where we have symmetrized operator products in the conventional way. 
We now turn to the question of the choice of algebra for physical applications. A 

fundamental requirement for consistency is that the Jacobi identity should be satisfied. First 
consider the classical Dirac bracket algebra (8). This has been evaluated on the surface of 
constraints. If we now test for the Jacobi identity 

{x’, ( X ” ~ X * ~ D B ~ D B  + { x ” ,  {xA, X’)DB)DB f {x * ,  {XP,XY)DBIDB = o  (11) 

we find that this equation is not satisfied for some values of the indices. Similar results hold 
using the momentum coordinates. In each case the left-hand side is proportional to fg. 

We may refer to this failure as the classical Jacobi anomaly. The reason for this is 
readily understood when we recall the essential point emphasized by Dirac [3]: the process 
of taking Poisson brackets does not commute with the process of applying constraints. The 
classical Jacobi anomaly does not occur only when we apply the second-class constraints 
XI. xz after evaluating all partial derivatives in the Jacobi identity calculation for the Dirac 
brackets. This result has been verified for all possible combinations of the coordinates and 
momenta using the MAPLE symbolic algebra manipulation package. 

Because the quantized algebra (10) was extracted from (8), which itself does not satisfy 
the classical Jacobi identity, it should not surprise us if the quantum operator Jacobi identity 
does not hold for (10) either. The proposed 
commutators (10) generate bilinear combinations of the operators which do not readily 
simplify in the Jacobi identity calculation. Using MAPLE we were able to find cancellations 
for most but not all combinations of indices. This is not a direct proof that the quantum 

This indeed turns out to be the case. 
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Jacobi identity does not hold, but the pattern of the calculations makes this most probably 
the case. As with the classical Jacobi anomaly, the quantum Jacobi anomaly is proportional 
to fg at the first level of calculation. Successive substitutions of operator products generate 
terms proportional to higher powers of fg. This leads us to believe that the quantum 
anomaly does exist if fg # 0. It is certainly the case that the Jacobi anomaly in either its 
classical or quantum form does not occur if either f = 0 or g = 0. 

We argued above that the classical Jacobi anomaly can be understood by the failure 
of the processes of differentiation and taking of constraints to commute. We may quite 
naturally ask for a similar explanation of the quantum Jacobi anomaly. A serious problem 
arises here, however, because the Jacobi identity for operators really is an identity, involving 
a direct cancellation of operator products regardless of any particular representation of the 
operators. We, therefore, appear to iiave a hard task trying to explain the quantum Jacobi 
anomaly. The only answer which comes to mind is that for fg # 0 there does not exist any 
representation of the ‘algebra’ in terms of associative linear operators; the inexorable logic 
of the quantum Jacobi identity would otherwise hold and we could immediately prove that 
there was no quantum anomaly. 

For g = 0 we recover Snyder’s spacetime-momentum algebra if we identify the constant 
OL with Snyder’s constant a-’and change the sign of the energy pi [I]. Physically, we would 
expect Snyder’s a to be related to the cosmological constant, that is, virtually zero, and then 
the spacetime algebra becomes consistent with the normal Poincari algebra. The mass-shell 
condition for a finite rest mass will still hold provided that the quantity z2 - (Y remains 
finite as (Y tends to infinity. 

Using MAPLE, we were able to prove that the abstract Snyder’s algebra does indeed 
satisfy the quantum Jacobi identity and we must, therefore, be able to find at least one 
representation for the operators. Snyder gave a representation which in our notion reduces 
to the form 

jj’ + p’ 
a a 

a h  a f ”  2’ -+ -i- + i fp’pv- 
Using MAPLE we were indeed able to prove that this particular representation satisfies the 
quantum Jacobi identity. 

It is of interest that another solution to the problem of the anomaly is to take f = 0. 
Then we recover the algebra 

[x’. x” ]  = 0 

i 
B 

[p’, p”] = -M””. 

This algebra is isomorphic to Snyder’s algebra and so it satisfies the quantum Jacobi identity 
and has an analogous representation. In this case we interpret the algebra as corresponding 
to a curved momentum space. Work is in hand on the further interpretation and application 
of our results to the problem of regularization of field theory. The same curved momentum 
space was discussed recently by Mir-Kasimov using quantum-group theoretical methods [4], 
showing how a curved momentum space approach can be used to smooth out singularities 
in field theory propagators. 
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I am grateful to Professor Rufat Mir-Kasimov for invaluable discussions and advice about 
Snyder’s papers, and for sending me his preprints on related matters. 
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